24 research outputs found

    Critical Evaluation of Organic Thin-Film Transistor Models

    Full text link
    Thin-film transistors (TFTs) represent a wide-spread tool to determine the charge-carrier mobility of materials. Mobilities and further transistor parameters like contact resistances are commonly extracted from the electrical characteristics. However, the trust in such extracted parameters is limited, because their values depend on the extraction technique and on the underlying transistor model. We propose a technique to establish whether a chosen model is adequate to represent the transistor operation. This two-step technique analyzes the electrical measurements of a series of TFTs with different channel lengths. The first step extracts the parameters for each individual transistor by fitting the full output and transfer characteristics to the transistor model. The second step checks whether the channel-length dependence of the extracted parameters is consistent with the model. We demonstrate the merit of the technique for distinct sets of organic TFTs that differ in the semiconductor, the contacts, and the geometry. Independent of the transistor set, our technique consistently reveals that state-of-the-art transistor models fail to reproduce the correct channel-length dependence. Our technique suggests that contemporary transistor models require improvements in terms of charge-carrier-density dependence of the mobility and/or the consideration of uncompensated charges in the transistor channel.Comment: 20 pages, 10 figure

    Tunneling Probability Increases with Distance in Junctions Comprising Self-assembled Monolayers of Oligothiophenes

    Get PDF
    Molecular tunneling junctions should enable the tailoring of charge-transport at the quantum level through synthetic chemistry, but are hindered by the dominance of the electrodes. We show that the frontier orbitals of molecules can be decoupled from the electrodes, preserving their relative energies in self-assembled monolayers even when a top-contact is applied. This decoupling leads to the remarkable observation of tunneling probabilities that increase with distance in a series of oligothiophenes, which we explain using a two-barrier tunneling model. This model is generalizable to any conjugated oligomers for which the frontier orbital gap can be determined and predicts that the molecular orbitals that dominate tunneling charge-transport can be positioned via molecular design rather than being dominated by Fermi-level pinning arising from strong hybridization. The ability to preserve the electronic structure of molecules in tunneling junctions facilitates the application of well-established synthetic design rules to tailor the properties of molecular-electronic devices

    Maternal embryonic leucine zipper kinase is a novel target for proliferation associated high-risk myeloma.

    Full text link
    Treatment of high-risk patients is a major challenge in multiple myeloma. This is especially true for patients assigned to the gene-expression-profiling defined proliferation subgroup. Although recent efforts have identified some key players of proliferative myeloma, genetic interactions and players that can be targeted with clinically effective drugs have to be identified to overcome the poor prognosis of these patients. We therefore examined maternal embryonic leucine zipper kinase (MELK) for its implications in hyper-proliferative myeloma and analysed the activity of the MELK inhibitor OTSSP167 in vitro and in vivo. MELK was found to be significantly overexpressed in the proliferative subgroup of myeloma. This finding translated into poor overall survival in patients with high vs. low MELK expression. Enrichment analysis of upregulated genes in myeloma cells of MELKhigh patients confirmed the strong implications in myeloma cell proliferation. Targeting of MELK with OTSSP167 impaired the growth and survival of myeloma cells, thereby affecting central survival factors such as MCL-1 and IRF4. This activity was also observed in the 5TGM.1 murine model of myeloma. OTSSP167 reduced bone marrow infiltration and serum paraprotein levels in a dose-dependent manner. In addition, we revealed a strong link between MELK and other proliferation associated high-risk genes (PLK-1, EZH2, FOXM1, DEPDC1) and MELK inhibition also impaired the expression of those genes. We therefore conclude that MELK is an essential component of a proliferative gene signature and that pharmacological inhibition of MELK represents an attractive novel approach to overcome the poor prognosis of high-risk patients with a proliferative expression pattern

    Targeting of BMI-1 with PTC-209 shows potent anti-myeloma activity and impairs the tumour microenvironment

    No full text
    Abstract Background The polycomb complex protein BMI-1 (BMI-1) is a putative oncogene reported to be overexpressed in multiple myeloma (MM). Silencing of BMI-1 was shown to impair the growth and survival of MM cells. However, therapeutic agents specifically targeting BMI-1 were not available so far. Here, we investigated PTC-209, a novel small molecule inhibitor of BMI-1, for its activity in MM. Methods BMI-1 expression was analysed in human MM cell lines and primary MM cells by using publically available gene expression profiling (GEP) data. The anti-MM activity of PTC-209 was investigated by viability testing, cell cycle analysis, annexin V and 7-AAD staining, quantification of cleaved poly(ADP-ribose) polymerase (PARP), JC-1 as well as colony formation assays. Deregulation of central myeloma growth and survival genes was studied by quantitative PCR and flow cytometry, respectively. In addition, the impact of PTC-209 on in vitro osteoclast, osteoblast and tube formation was analysed. Results We confirmed overexpression of BMI-1 in MM patients by using publically available GEP datasets. Of note, BMI-1 expression was further increased at relapse which translated into significantly shorter overall survival in relapsed/refractory patients treated with bortezomib or dexamethasone. Treatment with PTC-209 significantly decreased viable cell numbers in human MM cell lines, induced a G1 cell cycle arrest, promoted apoptosis and demonstrated synergistic activity with pomalidomide and carfilzomib. The anti-MM activity of PTC-209 was accompanied by a significant decrease of cyclin D1 (CCND1) and v-myc avian myelocytomatosis viral oncogene homolog (MYC) expression as well as upregulation of cyclin-dependent kinase inhibitor 1A (CDKN1A) and cyclin-dependent kinase inhibitor 1B (CDKN1B). We also observed upregulation of NOXA (up to 3.6 ± 1.2-fold induction, P = 0.009) and subsequent downregulation of myeloid cell leukemia 1 (MCL-1) protein levels, which likely mediates the apoptotic effects of PTC-209. Importantly, the anti-MM activity was upheld in the presence of stromal support or myeloma growth factors insulin-like growth factor 1 (IGF-1) and interleukin 6 (IL-6). In the MM microenvironment, PTC-209 impaired tube formation, impaired osteoclast development and decreased osteoblast formation in a dose-dependent manner (P < 0.01 at 1 μM, respectively). The latter might be attributed to an induction of DKK1 and was reversed by concurrent anti-DKK1 antibody treatment. Conclusions We confirmed overexpression of BMI-1 in MM highlighting its role as an attractive drug target and reveal therapeutic targeting of BMI-1 by PTC-209 as a promising novel therapeutic intervention for MM

    Additional file 1: of Targeting of BMI-1 with PTC-209 shows potent anti-myeloma activity and impairs the tumour microenvironment

    No full text
    PTC-209 displays additive and synergistic activity with dexamethasone. Additive/synergistic activity of drug combinations was confirmed by concurrent treatment of MM cell lines with PTC-209 and dexamethasone for 96 h at varying concentrations. Graphs for MM.1S and U266 are representative for the panel of HMCLs analysed. Combination index (CI) values were determined with CompuSyn. CI values <0.8, 0.8–1.2 or >1.2 indicate synergistic, additive or antagonistic drug activities, respectively. SK-MM-1 cells did not respond to dexamethasone at the concentrations used (viability >100 % at the end of the incubation period); determination of CI values was thus not possible. NA not applicable. (PDF 631 kb
    corecore